At 13.8 billion years ago, our entire observable universe was the size of a peach and had a temperature of over a trillion degrees.
That's a pretty simple, but very bold statement to make, and it's not a statement that's made lightly or easily. Indeed, even a hundred years ago, it would've sounded downright preposterous, but here we are, saying it like it's no big deal. But as with anything in science, simple statements like this are built from mountains of multiple independent lines of evidence that all point toward the same conclusion — in this case, the Big Bang, our model of the history of our universe. [The Universe: Big Bang to Now in 10 Easy Steps]
But, as they say, don't take my word for it. Here are five pieces of evidence for the Big Bang:
And if that same universe has been around forever, then there's been plenty of time for light from that star, crawling through the cosmos at a relatively sluggish speed of c, to reach your eyeballs. Even the presence of any intervening dust wouldn't diminish the accumulated light from an infinity of stars spread out over an infinitely large cosmos.
Ergo, the sky should be ablaze with the combined light of a multitude of stars. Instead, it's mostly darkness. Emptiness. Void. Blackness. You know, space.
The German physicist Heinrich Olbers may not have been the first person to note this apparent paradox, but his name stuck to the idea: It's known as Olbers' paradox. The simple resolution? Either the universe is not infinite in size or it's not infinite in time. Or maybe it's neither.
What's most important for this discussion is the"very distant" part of that conclusion.
Because light takes time to travel from one place to another, we don't see stars and galaxies as they are now, but as they were thousands, millions or billions of years ago. That means that looking deeper into the universe is also looking deeper into the past. We see a lot of quasars in the distant cosmos, which means these objects were very common billions of years ago. But there are hardly any quasars in our local, up-to-date neighborhood. And they’re common enough in the far-away (that is, young) universe that we should see a lot more in our vicinity.
The simple conclusion: The universe was different in its past than it is today.
In an expanding universe, the rules are simple. Every galaxy is receding from (almost) every other galaxy. Light from distant galaxies will get redshifted — the wavelengths of light they're releasing will get longer, and thus redder, from the perspective of other galaxies. You might be tempted to think that this is due to the motion of individual galaxies speeding around the universe, but the math doesn’t add up.
The amount of redshift for a specific galaxy is related to how far away it is. Closer galaxies will get a certain amount of redshifting. A galaxy twice as far away will get twice that redshift. Four times the distance? That's right, four times the redshift. To explain this with just galaxies zipping around, there has to be a really odd conspiracy where all the galactic citizens of the universe agree to move in this very specific pattern.
Instead, there's a far simpler explanation: The motion of galaxies is due to the stretching of space between those galaxies.
We live in a dynamic, evolving universe. It was smaller in the past and will be bigger in the future.
At some point, when the universe was, say, a million times smaller than it is now, everything would have been so smashed together that it would be a plasma. In that state, electrons would be unbound from their nuclear hosts and free to swim, all of that matter bathed in intense, high-energy radiation.
But as that infant universe expanded, it would've cooled to a point where, suddenly, electrons could settle comfortably around nuclei, making the first complete atoms of hydrogen and helium. At that moment, the crazy-intense radiation would roam unhindered through the newly thin and transparent universe. And as that universe expanded, light that started out literally white-hot would've cooled, cooled, cooled to a bare few degrees above absolute zero, putting the wavelengths firmly in the microwave range.
And when we point our microwave telescopes at the sky, what do we see? A bath of background radiation, surrounding us on all sides and almost perfectly uniform (to one part in 100,000!) in all directions. A baby picture of the universe. A postcard from a long-dead era. Light from a time nearly as old as the universe itself.
We have a pretty decent handle on nuclear physics nowadays, and we can use that knowledge to predict the relative amount of the lightest elements in our universe. The prediction: That congealing soup should have spawned roughly three-fourths hydrogen, one-fourth helium and a smattering of "other."
The challenge then goes to the astronomers, and what do they find? A universe composed of, roughly, three-fourths hydrogen, one-fourth helium and a smaller percentage of "other." Bingo.
There's more evidence, too, of course. But this is just the starting point for our modern Big Bang picture of the cosmos. Multiple independent lines of evidence all point to the same conclusion: Our universe is around 13.8 billion years old, and at one time, it was the size of a peach and had a temperature of over a trillion degrees.
Paul Sutter is an astrophysicist at The Ohio State University and the chief scientist at COSI science center. Sutter is also host of Ask a Spaceman and Space Radio, and leadsAstroTours around the world. Sutter contributed this article to Space.com's Expert Voices: Op-Ed & Insights.
Learn more by listening to the episode "What happens when galaxies collide?" on the Ask A Spaceman podcast, available on iTunes and on the Web at http://www.askaspaceman.com. Thanks to Mike D., Tripp B., Sedas S., Isla, and Patrick D. for the questions that led to this piece! Ask your own question on Twitter using #AskASpaceman or by following Paul @PaulMattSutter and facebook.com/PaulMattSutter. Follow us @Spacedotcom, Facebook and Google+. Original article on Space.com.