Catalysis, corrosion, and friction are a few examples of familiar processes that occur on solid surfaces. The field of surface chemistry tries to unravel and understand the basic chemical principles that underly such phenomena. At Stony Brook we are actively researching how the electronic and geometric structure of a surface affects its chemical selectivity and reactivity during surface-mediated processes such as catalysis and the chemical vapor deposition of metals from organometallic precursors. In addition, we are interested in understanding the interactions between energetic ions and surfaces in both atmospheric and metal-etching reactions. An arsenal of sophisticated techniques is available to prove both the geometric and electronic structures of a reacting surface on an atomic level. Techniques such as Auger electron spectroscopy (AES) and high-resolution, electron energy loss spectroscopy (HREELS) are used to determine the composition of a surface, while ultraviolet and X-ray photons are commonly used to eject photoelectrons from a surface (which are energy analyzed) yielding electronic structure information. Another technique, low-energy electron diffraction (LEED), exploits the wave nature of electrons and is used to help determine the geometric structure of a surface. These techniques, routinely used at Stony Brook, are complemented by the powerful extended- and near-edge X-ray absorption fine-structure techniques (EXAFS and NEXAFS), available at the National Synchrotron Light Source at nearby Brookhaven National Laboratory. Scholarships - View all scholarships Internships
Duration: 6 Semester(s)Fees: Not available
Intake | Location |
---|---|
Fall (August), 2024 | Stony Brook |
Fall (August), 2025 | Stony Brook |
B. A minimum grade point average of 3.00 (B) in all undergraduate work and 3.00 (B) in all courses in the sciences and mathematics.
C. Results of the Graduate Record Examination (GRE) General Test.
D. Acceptance by the Department of Chemistry and by the Graduate School.
In exceptional cases, a student not meeting requirements A and B may be admitted on a provisional basis.
An applicant must have a minimum cumulative grade point average of 3.00 on a 4.00 point scale.
IELTS: Overall score of 6.5, with no subsection recommended to be below 6
TOEFL: 90 for admission to a doctoral program and to be eligible for consideration for TA/GA support
6.5
Overall IELTS band score
Book IELTS
About IELTS
Practice and prepare
TOEFL Internet based overall score: 90.0
251st / 1250
THE World ranking