The first five prime numbers: 2, 3, 5, 7 and 11. A prime number is an integer, or whole number, that has only two factors — 1 and itself. Put another way, a prime number can be divided evenly only by 1 and by itself. Prime numbers also must be greater than 1. For example, 3 is a prime number, because 3 cannot be divided evenly by any number except for 1 and 3. However, 6 is not a prime number, because it can be divided evenly by 2 or 3.
This grid can be used as a Sieve of Eratosthenes if you were to cross out all of the numbers that are multiples of other numbers. The prime numbers are underlined. (Image credit: Ray49 Shutterstock)In 200 B.C., Eratosthenes created an algorithm that calculated prime numbers, known as the Sieve of Eratosthenes. This algorithm is one of the earliest algorithms ever written. Eratosthenes put numbers in a grid, and then crossed out all multiples of numbers until the square root of the largest number in the grid is crossed out. For example, with a grid of 1 to 100, you would cross out the multiples of 2, 3, 4, 5, 6, 7, 8, 9, and 10, since 10 is the square root of 100. Since 6, 8, 9 and 10 are multiples of other numbers, you no longer need to worry about those multiples. So for this chart, you would cross out the multiples of 2, 3, 5 and 7. With these multiples crossed out, the only numbers that remain and are not crossed out are prime. This sieve enables someone to come up with large quantities of prime numbers.
But during the Dark Ages, when intellect and science were suppressed, no further work was done with prime numbers. In the 17th century, mathematicians like Fermat, Euler and Gauss began to examine the patterns that exist within prime numbers. The conjectures and theories put out by mathematicians at the time revolutionized math, and some have yet to be proven to this day. In fact, proof of the Riemann Hypothesis, based on Bernhard Riemann's theory about patterns in prime numbers, carries a $1 million prize from the Clay Mathematics Institute. [Related: Famous Prime Number Conjecture One Step Closer to Proof]
Confidence in modern banking and commerce systems hinges on the assumption that large composite numbers cannot be factored in a short amount of time. Two primes are considered as sufficiently secure if they are 2,048 bits long, because the product of these two primes would be about 1,234 decimal digits.
This may sound implausible (obviously, cicadas don't know math), but simulation models of 1,000 years of cicada evolution prove that there is a major advantage for reproductive cycle times based on primes. It can be viewed here at http://www.arachnoid.com/prime_numbers/. It may not be intentional on the part of Mother Nature, but prime numbers show up more in nature and our surrounding world than we may think.
Related:
Cool Math GamesGoogol, Googolplex -- & GoogleRoman Numerals: Conversion, Meaning & OriginsWhat is Pi?Who Invented Zero?