A logarithm is a mathematical operation that determines how many times a certain number, called the base, is multiplied by itself to reach another number. Because logarithms relate geometric progressions to arithmetic progressions, examples are found throughout nature and art, such as the spacing of guitar frets, mineral hardness, and the intensities of sounds, stars, windstorms, earthquakes and acids. Logarithms even describe how humans instinctively think about numbers.
Logarithms were invented in the 17th century as a calculation tool by Scottish mathematician John Napier (1550 to 1617), who coined the term from the Greek words for ratio (logos) and number (arithmos). Before the invention of mechanical (and later electronic) calculators, logarithms were extremely important for simplifying computations found in astronomy, navigation, surveying, and later engineering.
log2(64) = x
A logarithm can be thought of as the inverse of an exponential, so the above equation has the same meaning as:
2x = 64
Since 2 x 2 x 2 x 2 x 2 x 2 = 64, 26 = 64. This means if we fold a piece of paper in half six times, it will have 64 layers. Consequently, the base-2 logarithm of 64 is 6, so log2(64) = 6.
log1/100(1/1022) = 11
Thus, after 11 C dilutions, there will only be one molecule of the original alcohol left. (Aside, this is less than half of the 30 C dilutions common in homeopathy, which shows why the practice is irreconcilable with modern chemistry.)
To do a logarithm in a base other than 10 or e, we employ a property intrinsic to logarithms. From our first example above, log2(64) may be entered into a calculator as “log(64)/log(2)” or “ln(64)/ln(2)”; either will give the desired answer of 6. Likewise, log1/100(1/1022) equals “log(1/1022)/log(1/100)” and “ln(1/1022)/ln(1/100)” for an answer of 11.
The table shows that the numbers relating various linear and logarithmic systems vary widely. This is because a logarithmic scale is often invented first as a characterization technique without a deep understanding of the measurable phenomena behind that characterization. A good example is star brightness, which was introduced by Hipparchus, a second-century B.C. Greek astronomer. The brightest stars in the night sky were said to be of first magnitude (m = 1), whereas the faintest were of sixth magnitude (m = 6). In the 19th century A.D., English astronomer Norman Robert Pogson discovered that magnitude is the logarithm of the amount of starlight that hits a detector.
Most other logarithmic scales have a similar story. That logarithmic scales often come first suggests that they are, in a sense, intuitive. This not only has to do with our perception, but also how we instinctively think about numbers.
Research with people native to the Amazon, who “do not have number words beyond five, and they don’t recite these numbers,” shows that people, if left to their instincts, will continue thinking this way. If someone is shown one object on the left and nine on the right and is asked, “What is in the middle?”, you and I would choose five objects, but the average Amazonian will choose three. When thinking in terms of ratios and logarithmic scales (rather than differences and linear scales), one times three is three, and three times three is nine, so three is in the middle of one and nine.
37 × 59
From a version of Napier’s tables, each of these numbers could be written as follows:
101.5682 × 101.7709
Exponents have a useful property that enables the following step:
101.5682 + 1.7709
Which leaves:
103.3391
From another table, the final answer is determined:
2,183
Linear rulers can be used to do addition. Here it is shown that 2 + 3 = 5. (Image credit: Robert J. Coolman)Similar to the procedure shown above, two rulers can be used to multiply when printed with logarithmic scales.
Logarithmic rulers can be used to do multiplication. Here it is shown that 2 × 8 = 16. (Image credit: Robert J. Coolman)These markings also match the spacing of frets on the fingerboard of a guitar or ukulele. Musical notes vary on a logarithmic scale because progressively higher octaves (ends of a musical scale) are perceived by the human ear as evenly spaced even though they’re produced by repeatedly cutting the string in half (multiplying by ½). Between the neck and the mid-point of a guitar string, there will be 12 logarithmically spaced frets.
Additional resources
Nature: Why we should love logarithmsRadio Lab: Innate NumbersNumberphile: Log Tables (YouTube)Math Is Fun: Introduction to LogarithmsKhan Academy: Logarithm Tutorial